Formulas, Weights and Measures used in Pumping

This page of formulas, weights and measures may come in handy for you when you are trying to calculate or figure the items of importance in the pumping industry. If you have any questions about them, please don't hesitate to call.

Acres in a Parcel of Land

Section $=640$ Acres
Irrigated Acres in Section Pivot $=\mathbf{5 0 2 . 6 5}$ Acres $($ Rounded to 502)
Non-irrigated Corners $=34.34$ Acres x $4=137.36$ Acres (Rounded to 34 Acres per corner)
$1 / 2$ Section $=\underline{\mathbf{3 2 0} \text { Acres }}$
Irrigated Acres in $1 / 2$ Section Pivot $=251.32$ Acres $($ Rounded to 251$)$
Non-irrigated Corners $=34.34$ Acres $\times 2=68.68$ Acres (Rounded to 34 Acres per corner)
$1 / 4$ Section $=160$ Acres
Irrigated Acres in $1 / 4$ section $=120$ Acres
Non-irrigated Corners $=10$ Acres $\times 4=40$ Acres
Acres in odd size parcel $=($ length in feet x width in feet $) / 43,560$
Acres in odd size pivot $=(($ length of pivot x length of pivot $) \times 3.14159) / 43,560$
Acres in odd size pivot $=$ Radius squared $\times \operatorname{Pi}(3.14159) / 43,560$
Square feet in Acre of Land $=43,560$ square feet
1 Square Acre $=208.71$ feet length $\times 208.71$ feet wide

Measurements of Distance

When considering distance from Lagoon to the field it is always determined by the "hose distance" as this is the distance the effluent must travel. This is always longer than the distance the crow flies as the hose must go through culverts, go around obstacles and areas we don't have permission to cross as well as it must traverse the field without overlapping itself.

Feet in a Mile $=5,280$ Feet (8 Hoses)
Feet in $1 / 2$ Mile $=2640$ Feet $(4$ Hoses $)$
Feet in $1 / 4$ Mile $=1320$ Feet $(2$ Hoses $)$
Feet in $1 / 8$ Mile $=660$ Feet
Diagonal of Section $=7,467$ Feet
Diagonal of $1 / 4$ Section $=3,733$ Feet
Diagonal of 40 Acres $=1,866$ Feet

Measurements of Water

Acre Inch of Water $=27,154$ Gallons
Acre Foot of Water $=325,851$ Gallons
Weight of Gallon of Fresh Water $=8.345$ Pounds
Weight of a Gallon of Effluent $=($ varies by $\%$ of solids it contains $)$ Average used in calculations $=8.5$ Pounds
Gallons in a Cubic Foot of water $=7.48$ or rounded in calculations to 7.5 gallons
Pounds in a Cubic Foot of water $=62.42$ pounds in ft of fresh water; 63.58 pounds in ft of average effluent

Gallons of Water in a Lagoon

Gallons in Lagoon $=$ Average Square feet of Lagoon x Water Depth x 7.5
See separate article for calculations

Calculate Dry Tons of Manure in an Effluent

This formula is not needed in an agriculture environment. However it is useful in commercial applications and for commercial and industrial pumping of lagoons.
(Length of lagoon x Width of lagoon x Depth of lagoon) $=$ Cubic feet x 7.5 gallons $/ \mathrm{cf}=$ Total gallons
Gallons x 8.5 pounds/gal = Pounds of Effluent x Percentage of solids in effluent $=$ Pounds of dry solids
Pounds $/ 2000$ pounds/ton $=$ Total Dry tons

